Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 17(1): 181, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589957

RESUMO

ABSTRACT: BACKGROUND: Anopheles mosquitoes are ectothermic and involved in numerous pathogen transmissions. Their life history traits are influenced by several environmental factors such as temperature, relative humidity and photoperiodicity. Despite extensive investigations of these environmental conditions on vector population ecology, their impact on the different life stages of Anopheles at different seasons in the year remains poorly explored. This study reports the potential impact of these abiotic factors on the immature and adult stages of Anopheles gambiae sensu lato during different seasons. METHODS: Environmental conditions were simulated in the laboratory using incubators to mimic the environmental conditions of two important periods of the year in Burkina Faso: the peak of rainy season (August) and the onset of dry season (December). Eggs from wild An. coluzzii and An. gambiae s.l. were reared separately under each environmental condition. For Anopheles coluzzii or An. gambiae s.l., eggs were equally divided into two groups assigned to the two experimental conditions. Four replicates were carried out for this experiment. Then, egg hatching rate, pupation rate, larval development time, larva-to-pupae development time, adult emergence dynamics and longevity of Anopheles were evaluated. Also, pupae-to-adult development time from wild L3 and L4 Anopheles larvae was estimated under semi-field conditions in December. RESULTS: A better egg hatching rate was recorded overall with conditions mimicking the onset of the dry season compared to the peak of the rainy season. Larval development time and longevity of An. gambiae s.l. female were significantly longer at the onset of the dry season compared than at the peak of the rainy season. Adult emergence was spread over 48 and 96 h at the peak of the rainy season and onset of dry season conditions respectively. This 96h duration in the controlled conditions of December was also observed in the semi-field conditions in December. CONCLUSIONS: The impact of temperature and relative humidity on immature stages and longevity of An. gambiae s.l. adult females differed under both conditions. These findings contribute to a better understanding of vector population dynamics throughout different seasons of the year and may facilitate tailoring of control strategies.


Assuntos
Anopheles , Feminino , Animais , Estações do Ano , Burkina Faso/epidemiologia , Mosquitos Vetores , Óvulo , Larva
2.
Sci Rep ; 13(1): 13895, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626130

RESUMO

We present a new and innovative identification method based on deep learning of the wing interferential patterns carried by mosquitoes of the Anopheles genus to classify and assign 20 Anopheles species, including 13 malaria vectors. We provide additional evidence that this approach can identify Anopheles spp. with an accuracy of up to 100% for ten out of 20 species. Although, this accuracy was moderate (> 65%) or weak (50%) for three and seven species. The accuracy of the process to discriminate cryptic or sibling species is also assessed on three species belonging to the Gambiae complex. Strikingly, An. gambiae, An. arabiensis and An. coluzzii, morphologically indistinguishable species belonging to the Gambiae complex, were distinguished with 100%, 100%, and 88% accuracy respectively. Therefore, this tool would help entomological surveys of malaria vectors and vector control implementation. In the future, we anticipate our method can be applied to other arthropod vector-borne diseases.


Assuntos
Anopheles , Artrópodes , Aprendizado Profundo , Animais , Humanos , Mosquitos Vetores , Irmãos
3.
GigaByte ; 2023: gigabyte83, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37408730

RESUMO

Characterizing the entomological profile of malaria transmission at fine spatiotemporal scales is essential for developing and implementing effective vector control strategies. Here, we present a fine-grained dataset of Anopheles mosquitoes (Diptera: Culicidae) collected in 55 villages of the rural districts of Korhogo (Northern Côte d'Ivoire) and Diébougou (South-West Burkina Faso) between 2016 and 2018. In the framework of a randomized controlled trial, Anopheles mosquitoes were periodically collected by Human Landing Catches experts inside and outside households, and analyzed individually to identify the genus and, for a subsample, species, insecticide resistance genetic mutations, Plasmodium falciparum infection, and parity status. More than 3,000 collection sessions were carried out, achieving about 45,000 h of sampling efforts. Over 60,000 Anopheles were collected (mainly A. gambiae s.s., A. coluzzii, and A. funestus). The dataset is published as a Darwin Core archive in the Global Biodiversity Information Facility, comprising four files: events, occurrences, mosquito characterizations, and environmental data.

4.
Acta Trop ; 245: 106973, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37352998

RESUMO

Reduction in malaria clinical cases is strongly dependent on the ability to prevent Anopheles infectious bites. Vector control strategies using long-lasting insecticidal nets and indoor residual spraying with insecticides have contributed to significantly reduce the incidence of malaria in many endemic countries, especially in the Sub-Saharan region. However, global progress in reducing malaria cases has plateaued since 2015 mostly due to the increased insecticide resistance and behavioral changes in Anopheles vectors. Additional control strategies are thus required to further reduce the burden of malaria and contain the spread of resistant and invasive Anopheles vectors. The use of endectocides such as ivermectin as an additional malaria control tool is now receiving increased attention, driven by its different mode of action compared to insecticides used so far and its excellent safety record for humans. In this opinion article, we discuss the advantages and disadvantages of using ivermectin for malaria control with a focus on the risk of selecting ivermectin resistance in malaria vectors. We also highlight the importance of understanding how ivermectin resistance could develop in mosquitoes and what its underlying mechanisms and associated molecular markers are, and propose a research agenda to manage this phenomenon.


Assuntos
Anopheles , Inseticidas , Malária , Animais , Humanos , Ivermectina/farmacologia , Ivermectina/uso terapêutico , Inseticidas/farmacologia , Controle de Mosquitos , Mosquitos Vetores , Resistência a Inseticidas
5.
Parasit Vectors ; 16(1): 66, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788608

RESUMO

BACKGROUND: Domesticated animals play a role in maintaining residual transmission of Plasmodium parasites of humans, by offering alternative blood meal sources for malaria vectors to survive on. However, the blood of animals treated with veterinary formulations of the anti-helminthic drug ivermectin can have an insecticidal effect on adult malaria vector mosquitoes. This study therefore assessed the effects of treating cattle with long-acting injectable formulations of ivermectin on the survival of an important malaria vector species, to determine whether it has potential as a complementary vector control measure. METHODS: Eight head of a local breed of cattle were randomly assigned to either one of two treatment arms (2 × 2 cattle injected with one of two long-acting formulations of ivermectin with the BEPO® technology at the therapeutic dose of 1.2 mg/kg), or one of two control arms (2 × 2 cattle injected with the vehicles of the formulations). The lethality of the formulations was evaluated on 3-5-day-old Anopheles coluzzii mosquitoes through direct skin-feeding assays, from 1 to 210 days after treatment. The efficacy of each formulation was evaluated and compared using Cox proportional hazards survival models, Kaplan-Meier survival estimates, and log-logistic regression on cumulative mortality. RESULTS: Both formulations released mosquitocidal concentrations of ivermectin until 210 days post-treatment (hazard ratio > 1). The treatments significantly reduced mosquito survival, with average median survival time of 4-5 days post-feeding. The lethal concentrations to kill 50% of the Anopheles (LC50) before they became infectious (10 days after an infectious blood meal) were maintained for 210 days post-injection for both formulations. CONCLUSIONS: This long-lasting formulation of ivermectin injected in cattle could complement insecticide-treated nets by suppressing field populations of zoophagic mosquitoes that are responsible, at least in part, for residual malaria transmission. The impact of this approach will of course depend on the field epidemiological context. Complementary studies will be necessary to characterize ivermectin withdrawal times and potential environmental toxicity.


Assuntos
Anopheles , Inseticidas , Malária , Animais , Bovinos , Inseticidas/farmacologia , Ivermectina , Malária/prevenção & controle , Malária/veterinária , Malária/parasitologia , Controle de Mosquitos , Mosquitos Vetores/parasitologia
6.
Parasit Vectors ; 15(1): 338, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163071

RESUMO

BACKGROUND: Near-infrared spectroscopy (NIRS) has the potential to be a useful tool for assessing key entomological parameters of malaria-transmitting mosquitoes, including age, infectious status and species identity. However, before NIRS can be reliably used in the field at scale, methods for killing mosquitoes and conserving samples prior to NIRS scanning need to be further optimized. Historically, mosquitoes used in studies have been killed with chloroform, although this approach is not without health hazards and should not be used in human dwellings. For the application of NIRS scanning it is also unclear which mosquito preservation method to use. The aim of the study reported here was to investigate the use of pyrethrum spray, a commercially available insecticide spray in Burkina Faso, for killing mosquitoes METHODS: Laboratory-reared Anopheles gambiae and Anopheles coluzzii were killed using either a pyrethrum insecticide spray routinely used in studies involving indoor mosquito collections (Kaltox Paalga®; Saphyto, Bobo-Dioulasso, Burkina Faso) or chloroform ("gold standard"). Preservative methods were also investigated to determine their impact on NIRS accuracy in predicting the species of laboratory-reared Anopheles and wild-caught mosquito species. After analysis of fresh samples, mosquitoes were stored in 80% ethanol or in silica gel for 2 weeks and re-analyzed by NIRS. In addition, experimentally infected An. coluzzii and wild-caught An. gambiae sensu lato (s.l.) were scanned as fresh samples to determine whether they contained sporozoites, then stored in the preservatives mentioned above for 2 weeks before being re-analyzed. RESULTS: The difference in the accuracy of NIRS to differentiate between laboratory-reared An. gambiae mosquitoes and An. coluzzii mosquitoes killed with either insecticide (90%) or chloroform (92%) was not substantial. NIRS had an accuracy of 90% in determining mosquito species for mosquitoes killed with chloroform and preserved in ethanol or silica gel. The accuracy was the same when the pyrethrum spray was used to kill mosquitoes followed by preservation in silica gel, but was lower when ethanol was used as a preservative (80%). Regarding infection status, NIRS was able to differentiate between infected and uninfected mosquitoes, with a slightly lower accuracy for both laboratory and wild-caught mosquitoes preserved in silica gel or ethanol. CONCLUSIONS: The results show that NIRS can be used to classify An. gambiae s.l. species killed by pyrethrum spray with no loss of accuracy. This insecticide may have practical advantages over chloroform for the killing of mosquitoes in NIRS analysis.


Assuntos
Anopheles , Inseticidas , Piretrinas , Animais , Clorofórmio , Etanol , Humanos , Resistência a Inseticidas , Inseticidas/farmacologia , Mosquitos Vetores , Piretrinas/farmacologia , Sílica Gel , Espectroscopia de Luz Próxima ao Infravermelho/métodos
8.
Plant Cell ; 34(5): 2019-2037, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35157082

RESUMO

Stomata optimize land plants' photosynthetic requirements and limit water vapor loss. So far, all of the molecular and electrical components identified as regulating stomatal aperture are produced, and operate, directly within the guard cells. However, a completely autonomous function of guard cells is inconsistent with anatomical and biophysical observations hinting at mechanical contributions of epidermal origins. Here, potassium (K+) assays, membrane potential measurements, microindentation, and plasmolysis experiments provide evidence that disruption of the Arabidopsis thaliana K+ channel subunit gene AtKC1 reduces pavement cell turgor, due to decreased K+ accumulation, without affecting guard cell turgor. This results in an impaired back pressure of pavement cells onto guard cells, leading to larger stomatal apertures. Poorly rectifying membrane conductances to K+ were consistently observed in pavement cells. This plasmalemma property is likely to play an essential role in K+ shuttling within the epidermis. Functional complementation reveals that restoration of the wild-type stomatal functioning requires the expression of the transgenic AtKC1 at least in the pavement cells and trichomes. Altogether, the data suggest that AtKC1 activity contributes to the building of the back pressure that pavement cells exert onto guard cells by tuning K+ distribution throughout the leaf epidermis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Estômatos de Plantas/metabolismo
9.
Parasit Vectors ; 14(1): 457, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493324

RESUMO

BACKGROUND: Behavioural shifts in the canonical location and timing of biting have been reported in natural populations of anopheline malaria vectors following the implementation of insecticide-based indoor vector control interventions. These modifications increase the likelihood of human-vector contact and allow mosquitoes to avoid insecticides, both conditions being favourable to residual transmission of the malarial parasites. The biting behaviour of mosquitoes follows rhythms that are under the control of biological clocks and environmental conditions, modulated by physiological states. In this work we explore modifications of spontaneous locomotor activity expressed by mosquitoes in different physiological states to highlight phenotypic variability associated to circadian control that may contribute to explain residual transmission in the field. METHODS: The F10 generation progeny of field-collected Anopheles coluzzii from southwestern Burkina Faso was tested using an automated recording apparatus (Locomotor Activity Monitor, TriKinetics Inc.) under LD 12:12 or DD light regimens in laboratory-controlled conditions. Activity recordings of each test were carried out for a week with 6-day-old females belonging to four experimental treatments, representing factorial combinations of two physiological variables: insemination status (virgin vs inseminated) and gonotrophic status (glucose fed vs blood fed). Chronobiological features of rhythmicity in locomotor activity were explored using periodograms, diversity indices, and generalized linear mixed modelling. RESULTS: The average strength of activity, onset of activity, and acrophase were modulated by both nutritional and insemination status as well as by the light regimen. Inseminated females showed a significant excess of arrhythmic activity under DD. When rhythmicity was observed in DD, females displayed sustained activity also during the subjective day. CONCLUSIONS: Insemination and gonotrophic status influence the underlying light and circadian control of chronobiological features of locomotor activity. Overrepresentation of arrhythmic chronotypes as well as the sustained activity of inseminated females during the subjective day under DD conditions suggests potential activity of natural populations of A. coluzzii during daytime under dim conditions, with implications for residual transmission of malarial parasites.


Assuntos
Anopheles/fisiologia , Sangue/metabolismo , Comportamento Alimentar , Inseminação , Locomoção , Mosquitos Vetores/fisiologia , Animais , Anopheles/classificação , Burkina Faso , Relógios Circadianos , Feminino , Malária/parasitologia , Malária/transmissão , Controle de Mosquitos/métodos , Mosquitos Vetores/parasitologia
10.
Genome Biol Evol ; 13(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34432020

RESUMO

The magnitude and functional patterns of intraspecific transcriptional variation in the anophelines, including those of sex-biased genes underlying sex-specific traits relevant for malaria transmission, remain understudied. As a result, how changes in expression levels drive adaptation in these species is poorly understood. We sequenced the female, male, and larval transcriptomes of three populations of Anopheles arabiensis from Burkina Faso. One-third of the genes were differentially expressed between populations, often involving insecticide resistance-related genes in a sample type-specific manner, and with the females showing the largest number of differentially expressed genes. At the genomic level, the X chromosome appears depleted of differentially expressed genes compared with the autosomes, chromosomes harboring inversions do not exhibit evidence for enrichment of such genes, and genes that are top contributors to functional enrichment patterns of population differentiation tend to be clustered in the genome. Further, the magnitude of variation for the sex expression ratio across populations did not substantially differ between male- and female-biased genes, except for some populations in which male-limited expressed genes showed more variation than their female counterparts. In fact, female-biased genes exhibited a larger level of interpopulation variation than male-biased genes, both when assayed in males and females. Beyond uncovering the extensive adaptive potential of transcriptional variation in An. Arabiensis, our findings suggest that the evolutionary rate of changes in expression levels on the X chromosome exceeds that on the autosomes, while pointing to female-biased genes as the most variable component of the An. Arabiensis transcriptome.


Assuntos
Anopheles , Inseticidas , Malária , Animais , Anopheles/genética , Feminino , Resistência a Inseticidas/genética , Malária/genética , Masculino , Transcriptoma
11.
Parasit Vectors ; 14(1): 345, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34187546

RESUMO

BACKGROUND: Improving the knowledge and understanding of the environmental determinants of malaria vector abundance at fine spatiotemporal scales is essential to design locally tailored vector control intervention. This work is aimed at exploring the environmental tenets of human-biting activity in the main malaria vectors (Anopheles gambiae s.s., Anopheles coluzzii and Anopheles funestus) in the health district of Diébougou, rural Burkina Faso. METHODS: Anopheles human-biting activity was monitored in 27 villages during 15 months (in 2017-2018), and environmental variables (meteorological and landscape) were extracted from high-resolution satellite imagery. A two-step data-driven modeling study was then carried out. Correlation coefficients between the biting rates of each vector species and the environmental variables taken at various temporal lags and spatial distances from the biting events were first calculated. Then, multivariate machine-learning models were generated and interpreted to (i) pinpoint primary and secondary environmental drivers of variation in the biting rates of each species and (ii) identify complex associations between the environmental conditions and the biting rates. RESULTS: Meteorological and landscape variables were often significantly correlated with the vectors' biting rates. Many nonlinear associations and thresholds were unveiled by the multivariate models, for both meteorological and landscape variables. From these results, several aspects of the bio-ecology of the main malaria vectors were identified or hypothesized for the Diébougou area, including breeding site typologies, development and survival rates in relation to weather, flight ranges from breeding sites and dispersal related to landscape openness. CONCLUSIONS: Using high-resolution data in an interpretable machine-learning modeling framework proved to be an efficient way to enhance the knowledge of the complex links between the environment and the malaria vectors at a local scale. More broadly, the emerging field of interpretable machine learning has significant potential to help improve our understanding of the complex processes leading to malaria transmission, and to aid in developing operational tools to support the fight against the disease (e.g. vector control intervention plans, seasonal maps of predicted biting rates, early warning systems).


Assuntos
Meio Ambiente , Mordeduras e Picadas de Insetos , Aprendizado de Máquina/estatística & dados numéricos , Malária/transmissão , Mosquitos Vetores/fisiologia , População Rural/estatística & dados numéricos , Animais , Burkina Faso , Humanos , Controle de Mosquitos/métodos , Estações do Ano
12.
Sci Rep ; 11(1): 10289, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986416

RESUMO

There is an urgent need for high throughput, affordable methods of detecting pathogens inside insect vectors to facilitate surveillance. Near-infrared spectroscopy (NIRS) has shown promise to detect arbovirus and malaria in the laboratory but has not been evaluated in field conditions. Here we investigate the ability of NIRS to identify Plasmodium falciparum in Anopheles coluzzii mosquitoes. NIRS models trained on laboratory-reared mosquitoes infected with wild malaria parasites can detect the parasite in comparable mosquitoes with moderate accuracy though fails to detect oocysts or sporozoites in naturally infected field caught mosquitoes. Models trained on field mosquitoes were unable to predict the infection status of other field mosquitoes. Restricting analyses to mosquitoes of uninfectious and highly-infectious status did improve predictions suggesting sensitivity and specificity may be better in mosquitoes with higher numbers of parasites. Detection of infection appears restricted to homogenous groups of mosquitoes diminishing NIRS utility for detecting malaria within mosquitoes.


Assuntos
Anopheles/parasitologia , Mosquitos Vetores/parasitologia , Plasmodium falciparum/isolamento & purificação , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Animais
14.
PLoS One ; 15(8): e0236920, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32745085

RESUMO

BACKGROUND: Twenty-seven villages were selected in southwest Burkina Faso to implement new vector control strategies in addition to long lasting insecticidal nets (LLINs) through a Randomized Controlled Trial (RCT). We conducted entomological surveys in the villages during the dry cold season (January 2017), dry hot season (March 2017) and rainy season (June 2017) to describe malaria vectors bionomics, insecticide resistance and transmission prior to this trial. METHODS: We carried out hourly catches (from 17:00 to 09:00) inside and outside 4 houses in each village using the Human Landing Catch technique. Mosquitoes were identified using morphological taxonomic keys. Specimens belonging to the Anopheles gambiae complex and Anopheles funestus group were identified using molecular techniques as well as detection of Plasmodium falciparum infection and insecticide resistance target-site mutations. RESULTS: Eight Anopheles species were detected in the area. Anopheles funestus s.s was the main vector during the dry cold season. It was replaced by Anopheles coluzzii during the dry hot season whereas An. coluzzii and An. gambiae s.s. were the dominant species during the rainy season. Species composition of the Anopheles population varied significantly among seasons. All insecticide resistance mechanisms (kdr-w, kdr-e and ace-1 target site mutations) investigated were found in each members of the An. gambiae complex but at different frequencies. We observed early and late biting phenotypes in the main malaria vector species. Entomological inoculation rates were 2.61, 2.67 and 11.25 infected bites per human per month during dry cold season, dry hot season and rainy season, respectively. CONCLUSION: The entomological indicators of malaria transmission were high despite the universal coverage with LLINs. We detected early and late biting phenotypes in the main malaria vector species as well as physiological insecticide resistance mechanisms. These data will be used to evaluate the impact of complementary tools to LLINs in an upcoming RCT.


Assuntos
Anopheles , Resistência a Inseticidas/genética , Malária Falciparum/transmissão , Mosquitos Vetores/genética , Animais , Anopheles/classificação , Anopheles/genética , Anopheles/parasitologia , Burkina Faso/epidemiologia , Culex/classificação , Culex/genética , Culex/parasitologia , Culicidae/classificação , Culicidae/genética , Culicidae/parasitologia , Ecologia , Genótipo , Humanos , Malária Falciparum/prevenção & controle , Controle de Mosquitos/métodos , Controle de Mosquitos/organização & administração , Mosquitos Vetores/classificação , Mosquitos Vetores/parasitologia , Plasmodium falciparum/isolamento & purificação , Estações do Ano
15.
Parasit Vectors ; 9: 263, 2016 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-27146309

RESUMO

BACKGROUND: Research efforts to identify possible alternative control tools for malaria and African trypanosomiasis are needed. One promising approach relies on the use of traditional plant remedies with insecticidal activities. METHODS: In this study, we assessed the effect of blood treated with different doses of NeemAzal ® (NA, neem seed extract) on mosquitoes (Anopheles coluzzii) and tsetse flies (Glossina palpalis gambiensis) (i) avidity to feed on the treated blood, (ii) longevity, and (iii) behavioural responses to human and calf odours in dual-choice tests. We also gauged NeemAzal ® toxicity in mice. RESULTS: In An. coluzzii, the ingestion of NA in bloodmeals offered by membrane feeding resulted in (i) primary antifeedancy; (ii) decreased longevity; and (iii) reduced response to host odours. In G. palpalis gambiensis, NA caused (i) a knock-down effect; (ii) decreased or increased longevity depending on the dose; and (iii) reduced response to host stimuli. In both cases, NA did not affect the anthropophilic rate of activated insects. Overall, the most significant effects were observed with NA treated bloodmeals at a dose of 2000 µg/ml for mosquitoes and 50 µg/ml for tsetse flies. Although no mortality in mice was observed after 14 days of follow-up at oral doses of 3.8, 5.6, 8.4 and 12.7 g/kg, behavioural alterations were noticed at doses above 8 g/kg. CONCLUSION: This study revealed promising activity of NA on A. coluzzii and G. palpalis gambiensis but additional research is needed to assess field efficacy of neem products to be possibly integrated in vector control programmes.


Assuntos
Anopheles/efeitos dos fármacos , Azadirachta/química , Comportamento Alimentar/efeitos dos fármacos , Extratos Vegetais/farmacologia , Moscas Tsé-Tsé/efeitos dos fármacos , Animais , Feminino , Inseticidas/química , Inseticidas/farmacologia , Masculino , Camundongos , Extratos Vegetais/efeitos adversos , Extratos Vegetais/química
16.
Parasit Vectors ; 9: 11, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26739500

RESUMO

BACKGROUND: Survival to dry season conditions of sub-Saharan savannahs is a major challenge for insects inhabiting such environments, especially regarding the desiccation threat they are exposed to. While extensive literature about insect seasonality has revealed morphologic, metabolic and physiological changes in many species, only a few studies have explored the responses following exposure to the stressful dry season conditions in major malaria vectors. Here, we explored morphological changes triggered by exposure to dry season conditions in An. gambiae s.l. mosquitoes by comparing females reared in climatic chambers reflecting environmental conditions found in mosquito habitats during the rainy and dry seasons in a savannah area of Burkina Faso (West Africa). RESULTS: Using scanning electron microscopy (SEM) and confocal imaging, we revealed significant changes in morphological features of the spiracles in females An. gambiae s.l. exposed to contrasted environmental conditions. Hence, the hairs surrounding the spiracles were thicker in the three species when raised under dry season environmental conditions. The thicker hairs were in some cases totally obstructing spiracular openings. Specific staining provided evidence against contamination by external microorganisms such as bacteria and fungi. However, only further analysis would unequivocally rule out the hypothesis of experimental artifact. CONCLUSION: Morphological changes in spiracular features probably help to limit body water loss during desiccating conditions, therefore contributing to insect survival. Differences between species within the An. gambiae complex might therefore reflect different survival strategies used by these species to overcome the detrimental dry season conditions in the wild.


Assuntos
Anopheles/ultraestrutura , Insetos Vetores/ultraestrutura , Malária/transmissão , Animais , Anopheles/fisiologia , Burkina Faso/epidemiologia , Desidratação , Ecossistema , Meio Ambiente , Feminino , Humanos , Insetos Vetores/fisiologia , Masculino , Fenótipo , Estações do Ano
17.
Malar J ; 13 Suppl 1: 496, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26651335

RESUMO

BACKGROUND: The success of current control tools in combatting malaria vectors is well established. However, sustained residual transmission of Plasmodium parasites persists. Mass drug administration (MDA) to humans of the endectocide ivermectin for vector control is receiving increasing attention. However, vectors feeding upon animals escape this promising approach. Zoophagy of mosquitoes sustains both the vector population and endemic population of vector-borne pathogens. Therefore, only a strategy that will combine ivermectin MDAs targeted at humans and their peridomestic animals could be successful at controlling residual malaria transmission. METHODS: Burkinabé cattle have been treated with injectable therapeutic dose of ivermectin (0.2 mg/kg of body weight) to render blood meals toxic to field representative populations of Anopheles coluzzii carrying the kdr mutation. Direct skin-feeding assays were performed from 2 to 28 days after injection (DAI) and mosquitoes were followed for their survival, ability to become gravid and fecundity. Membrane feeding assays were further performed to test if an ivermectin blood meal taken at 28 DAI impacts gametocyte establishment and development in females fed with infectious blood. RESULTS: The mosquitocidal effect of ivermectin is complete for 2 weeks after injection, whether 12 days cumulative mortalities were of 75 and 45 % the third and fourth weeks, respectively. The third week, a second ivermectin blood meal at sub-lethal concentrations further increased mortality to 100 %. Sub-lethal concentrations of ivermectin also significantly decreased egg production by surviving females, increasing further the detrimental effect of the drug on vector densities. Although females fitness was impaired by sub-lethal ivermectin blood meals, these did not diminish nor increase their susceptibility to infection. CONCLUSION: This study demonstrates the potential of integrated MDA of ivermectin to both human and peridomestic cattle to target vector reservoirs of residual malaria transmission. Such integration lies in 'One-Health' efforts being implemented around the globe, and would be especially relevant in rural communities in Africa where humans are also at risk of common zoonotic diseases.

18.
Acta Trop ; 143: 79-88, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25579425

RESUMO

The mosquito, Anopheles coluzzii is a major vector of human malaria in Africa with widespread distribution throughout the continent. The species hence populates a wide range of environments in contrasted ecological settings often exposed to strong seasonal fluctuations. In the dry savannahs of West Africa, this mosquito population dynamics closely follows the pace of surface water availability: the species pullulates during the rainy season and is able to reproduce throughout the dry season in areas where permanent water bodies are available for breeding. The impact of such environmental fluctuation on mosquito development and the phenotypic quality of emerging adults has however not been addressed in details. Here, we examined and compared phenotypic changes in the duration of pre-imaginal development, body dry mass at emergence and wing size, shape and surface area in young adult females An. coluzzii originated from five distinct geographic locations when they are reared in two contrasting conditions mimicking those experienced by mosquitoes during the rainy season (RS) and at the onset of the dry season (ODS) in Burkina Faso (West Africa). Our results demonstrated strong phenotypic plasticity in all traits, with differences in the magnitude and direction of changes between RS and ODS depending upon the geographic origin, hence the genetic background of the mosquito populations. Highest heterogeneity within population was observed in Bama, where large irrigation schemes allow year-round mosquito breeding. Further studies are needed to explore the adaptive value of such phenotypic plasticity and its relevance for local adaptation in An. coluzzii.


Assuntos
Anopheles/fisiologia , Insetos Vetores/fisiologia , Malária/transmissão , Estações do Ano , Asas de Animais/anatomia & histologia , Adulto , Animais , Burkina Faso , Ecologia , Meio Ambiente , Feminino , Humanos , Malária/epidemiologia , Masculino , Fenótipo , Dinâmica Populacional , Adulto Jovem
19.
Acta Trop ; 132 Suppl: S96-101, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24291460

RESUMO

Population replacement/elimination strategies based on mass-release of sterile or otherwise genetically modified (male) mosquitoes are being considered in order to expand the malaria vector control arsenal on the way to eradication. A challenge in this context, is to produce male mosquitoes that will be able to compete and mate with wild females more efficiently than their wild counterparts, i.e. high fitness males. This study explored the effect of three larval food diets developed by the International Atomic Energy Agency on the overall fitness and mating performance of male Anopheles gambiae s.s. mosquitoes (Kisumu strain). Larval development (pupation and emergence rate, development time) was monitored, and adult wing length and energy reserves at emergence (i.e. lipids, sugars, glycogen and proteins) were measured. Male sexual performance was assessed through an insemination test whereby one male and 10 virgin females were maintained together in the same cage in order to record the number of inseminated females per 24h. Our results show that males reared on Diets 2 and 3 performed best during larval development. Males provided with treatment 2.2 had a shorter development time and performed best in insemination tests. However, these males had the lowest overall lifespan, suggesting a trade-off between longevity and sexual performances which needs to be taken into consideration when planning release. The results from this work were discussed in the context of sterile insect techniques or genetic control methods which is today one of the strategy in the overall mosquito control and elimination efforts.


Assuntos
Anopheles/fisiologia , Dieta/métodos , Comportamento Sexual Animal , Animais , Anopheles/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Longevidade , Masculino
20.
PLoS Pathog ; 9(6): e1003365, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23818841

RESUMO

Understanding how mosquito vectors and malaria parasites interact is of fundamental interest, and it also offers novel perspectives for disease control. Both the genetic and environmental contexts are known to affect the ability of mosquitoes to support malaria development and transmission, i.e., vector competence. Although the role of environment has long been recognized, much work has focused on host and parasite genetic effects. However, the last few years have seen a surge of studies revealing a great diversity of ways in which non-genetic factors can interfere with mosquito-Plasmodium interactions. Here, we review the current evidence for such environmentally mediated effects, including ambient temperature, mosquito diet, microbial gut flora, and infection history, and we identify additional factors previously overlooked in mosquito-Plasmodium interactions. We also discuss epidemiological implications, and the evolutionary consequences for vector immunity and parasite transmission strategies. Finally, we propose directions for further research and argue that an improved knowledge of non-genetic influences on mosquito-Plasmodium interactions could aid in implementing conventional malaria control measures and contribute to the design of novel strategies.


Assuntos
Culicidae/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Insetos Vetores/metabolismo , Malária/transmissão , Plasmodium/fisiologia , Animais , Malária/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...